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Purpose. To develop a new strategy for the in silico evaluation of the
optimal in vivo delivery properties of a drug, minimizing a cost func-
tion defined by the brain receptor occupancy obtained in positron-
emission tomography experiments.
Methods. A convolution-based model was formulated to link in vivo
delivery rate to plasma concentrations whereas a second-stage model
was used to link plasma concentrations to the pharmacodynamic ef-
fect. A feedback control approach was applied to identify the optimal
in vivo delivery rate given an appropriate optimality criterion. Fi-
nally, clinical trial simulation was used as a supportive tool for deci-
sion-making by evaluating different scenarios accounting for phar-
macokinetic/pharmacodynamic parameter uncertainty, inter-subject
variability, and drug potency.
Results. The results revealed that the mean in vivo delivery time
significantly affects brain receptor occupancy whereas the fraction of
the dose available for the systemic circulation shows the highest in-
fluence on brain receptor occupancy for a given in vivo delivery rate.
Finally, variability on receptor occupancy seems to be more affected
by the inter-individual variability on the disposition PK parameters.
Conclusion. The integration of convolution-based model, feedback
control approach, and clinical trial simulation offers a unique tool for
in ilico improvement of the drug development process by identifying
critical issues on drug properties, optimal in vivo delivery rate, and
potential problems related to the inter-individual variability.

KEY WORDS: computer-assisted drug development; convolution-
based model; feedback control; optimal in vivo delivery rate; PET
imaging; trial simulation.

INTRODUCTION

The development, validation, and acceptance of appro-
priate biomarkers are seen as crucial in improving the drug
discovery and development process. One of the most prom-
ising biomarkers being investigated in the development of
central nervous system drugs is the measurement of drug
binding to specific cerebral receptors (RO) by positron emis-
sion tomography (PET) imaging technology (1). PET studies
can supply accurate information for a rational definition of a
dosage regimen likely to achieve expected therapeutic out-
comes, assuming that RO is a surrogate marker of a pharma-
cologic drug activity (2, 3). Preclinical studies have been con-
ducted on a new compound for neurologic and psychiatric
disorders, and an integrated model has been developed link-
ing drug pharmacokinetics (PKs) to RO evaluated in PET
experiments. Using this information, “first-time-in-man” and
“proof-of-concept” experiments have been designed in hu-
mans (4). Moreover, to evaluate the potential of this new
chemical entity for clinical development, it appeared essential

not only to estimate the appropriate effective dose in man (5)
but also to assess the expected optimal in vivo delivery rate,
which has been identified as an important determinant of
therapeutic outcome (6, 7). It was thus decided to investigate
the properties that are required for an extended release for-
mulation to prolong the duration of drug activity using an in
silico approach. The development of in silico methods is to-
day greatly enhanced by the availability of the computer-
assisted drug development (CADD) technology (5). CADD
is a knowledge-based iterative process by which newly col-
lected information is integrated in the existing drug and dis-
ease-specific knowledge frame and used to refine and update
the overall knowledge on the drug properties. The proposed
in silico methodology is organized according to the CADD
approach in three steps: 1) definition of a mechanistic model
linking In vivo drug delivery to pharmacodynamic effect, as
measured by RO; 2) development of a feedback control ap-
proach to estimate the optimal In vivo delivery rate; 3) evalu-
ation of the impact of different sources of uncertainty [PK/
pharmacodyamic (PD) parameter, inter-subject variability
and drug potency] on the predicted pharmacodynamic re-
sponse using clinical trial simulation.

MATERIALS AND METHODS

Convolution-Based PK Model

For drugs showing linear and time invariant disposition
with respect to the input, the plasma concentration (Cp), re-
sulting from an arbitrary dose, can be obtained by convolu-
tion:

Cp�t� = f �t�*UIR�t� = �0

t
f �t − �� � UIR��� � d� (1)

Where � is the integrating variable (time), f(t) is the rate of in
vivo delivery, and UIR(t) is the unit impulse response (e.g.,
the drug disposition and elimination time course estimated
from intravenous bolus or infusion). In the example pre-
sented below, f(t) will be described by a Weibull model
whereas UIR(t) will be described by a two-compartment lin-
ear model. The Weibull model (Eq. 2) was because it repre-
sents a general function that is currently used to describe in
vitro dissolution data and in vivo input rate (8).

f �t� = Fd � Dose � �1 − e
−� t

td
��� (2)

Where td is the time necessary to deliver 63.2% of the dose, Fd

is the fraction of the dose available for the systemic circula-
tion, and � is a unitless number defining the sigmoidal shape
of the curve. Numerical convolution was performed using the
point-area approach (9), and plasma concentrations after re-
peated doses were computed using the convolution model
prediction based on a unitary dose and the superposition prin-
ciple (10). A proportional variance error model was assumed
to affect plasma concentrations.

Pharmacodynamic Response Model

The pharmacologic effect can be generally linked to
plasma concentration using the following two methods: the
effect compartment approach and the indirect effect model-
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ing approach. Sometimes drug concentration in the effect
compartment (Ce) is a better predictor of the pharmacody-
namic response. In this case, Ce may be estimated from the
convolution of plasma concentration with the function T(t):

Ce = Cp�t� * T�t� = �0

t
Cp�t − �� � ke0e−ke0� d� (3)

Where ke0
is the effect compartment equilibration rate con-

stant. PD response can be modeled by the classic drug-
receptor theory using the drug concentration (C) in the
plasma compartment or in the effect site compartment. In the
example presented below, C was assumed to be equal to Cp,

and the sigmoidal Emax model was used with Emax fixed to
100:

PD�C� =
EmaxC�

EC�
50 + C�

(4)

An alternative modeling strategy is to use the indirect
effect model approach. This approach assumes that the phar-
macodynamic response is described by the differential equa-
tion:

dPD

dt
= kin � �1 + H1�t�� − kout � �1 + H2�t�� (5)

Where kin is a zero-order constant for production, kout is the
first-order rate constant for loss of response, and H1(t) and
H2(t) are functions defining the stimulation or inhibition of
the response (11). The proposed algorithm can use any of the
two pharmacodynamic modelling approaches described
above.

Adaptive Feedback Control Procedure

A feedback control process has been developed to esti-
mate the properties of an extended release formulation by
minimizing a cost function (CF), as defined by RO. The ra-
tionale for the use of RO as a surrogate marker of clinical
efficacy was based on studies conducted on drugs of the same
class, which suggest that the therapeutic effect occurs when
RO is maintained above 70% over 24 h during chronic treat-
ment of a few weeks’ duration. CF was defined in relation to
the therapeutic window (i.e., the minimal and maximal clini-
cal effect value over a given time interval) within which the
pharmacodynamic response is expected to lie (12).

CF =
1

Te − Ts
�

Ts

Te
�PD�t� − PD*�2 � r � dt (6)

Where Te and Ts define the beginning and the end time of the
evaluation period, PD(t) is the estimated pharmacodynamic
response, PD*�(PDmax + PDmin)*0.5, PDmin and PDmax are
the lower and upper bound of the therapeutic window, and r
is a weighting factor that penalises the predicted PD(t) effect
when PD(t) falls outside the therapeutic window. r is set to 1
for PD(t) values inside the therapeutic window and to a large
value otherwise. CF is a function of dose, frequency of ad-
ministration and drug delivery rate, but for the purpose of the
present analysis, CF was considered as only dependent on the
delivery rate. The dosage regimen was fixed to the one pre-
senting appealing properties for the new compound: once a
day dose at the maximal safe dose. A direct search algorithm,
based on the Hooke and Jeeves’s method, has been imple-

mented to minimise CF using of an iterative process starting
from predefined initial parameter values (13).

Trial Simulation

Information gathered from drugs of the same class sug-
gests that the therapeutic effect of the new compound is ex-
pected when the RO is maintained above 70% over 24 h
during chronic treatment of a week’s duration. Therefore, the
therapeutic window was defined by PDmax � 100%, PDmin

� 70%, Ts � 162 h, and Te � 192 h. Five simulations, in-
cluding several scenarios, were performed. The aim of the
first simulation was to evaluate the in vivo average delivery
rate (td* and �*) required to meet the therapeutic objective.
Despite the information gathered from interspecies scaling,
uncertainty persists on the expected fraction of the dose avail-
able for the systemic circulation in human (Fd) and on the in
vivo drug potency (EC50). Therefore, a second simulation was
performed to evaluate the influence of alternative Fd and
EC50 values on the expected clinical outcome. Finally, the
objective of the third simulation was to evaluate the impact of
inter-individual variability (IIV) on the absorption param-
eters, on disposition parameters, and on drug potency. One-
hundred subjects receiving an oral dose of 30 mg once a day
for a week were enrolled in each simulation scenario. In the
first simulation, Fd was fixed to 0.6, EC50 was estimated from
in vitro binding studies (0.467 ng/mL), and an IIV of 20% was
used for each parameter.

The optimal td and � values were estimated for each
subject using td � 1.5 h and � � 0.5 (the values describing the
oral solution absorption rate) as initial parameters in the
search algorithm. The estimated average td and � values (td*
and �*) were, therefore, considered as typical delivery values
for the optimal formulation and used in the subsequent simu-
lations. Sensitivity analysis was performed to investigate the
influence of potential changes and errors in model parameters
on conclusions drawn from this simulation. The normalised
sensitivity index (SI), quantifying the percentage change in
pharmacodynamic response at a percentage change of the
parameter p, was computed for the median PD (PD*) and p
(p*) reference and optimal values (14) as:

SI =
�PD

�p
�

p*
PD*

(7)

The highest SI values are associated to the most relevant
parameters. In the second simulation, td and � were fixed to
td* and �* while the clinical outcome was evaluated for three
values of Fd (0.4, 0.6, and 0.8) and EC50 (0.367, 0.467 and
0.567 ng/ml) assuming an IIV of 20% for each parameter. A
total of nine simulation scenarios were investigated.

In the third, fourth, and fifth simulations td and � were
fixed to td* and �*, Fd to 0.6, and EC50 to.467 ng/mL, whereas
the influence on the clinical outcome of low and high IIV
values were investigated as follows. Simulation 3: IIV on PK
absorption parameters (td, �, and Fd) of 10%, 20%, or 30%,
and 20% for all other parameters; simulation 4: IIV on PK
disposition parameters (clearance and V) of 10%, 20%, or
30%, and 20% for all other parameters; and simulation 5: IIV
on drug potency (EC50) of 10%, 20%, or 30%, and 20% for
all other parameters

The PK parameters [clearance � 109.5 L/h, k12 � 0.1
h−1, k21 � 0.12 h−1, volume of the central compartment � 498
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L] were based on scaling from preclinical studies and previ-
ously reported data (4). The median and the 5th and 95th

percentiles of the pharmacodynamic effect (RO) were esti-
mated at 24 h after the seventh dose to evaluate and compare
the different simulation scenarios. Each parameter was as-
sumed to be lognormally distributed, and the coefficient of
variation associated to the distribution was used as a measure
of the IIV. The computer simulations were performed using
the NONMEM (Version V) software (15). Through repeated
Monte Carlo simulations, the distribution of possible out-
comes for each of many variations on experimental design

was estimated. The simulations were based on a stochastic
model describing drug disposition and effects in a single sub-
ject over time as a function of subject characteristics, study
design, and random factors. Statistical analyses of the simu-
lated parameters were performed using SAS system (Version
8) (16).

RESULTS

Simulation 1

Fixing the upper RO value to 100%, four different mini-
mal RO values (50%, 60%, 70%, and 80%) were used to
explore the influence of different settings in the therapeutic
window on the expected in vivo delivery properties. The es-
timated mean Weibull model parameters for the 4 RO values
are: td � 3.75 h, � � 0.53; td � 8.08 h , � � 0.56; td � 14.6
h , � � 0.76, and td � 20.3 h , � � 1.08. Figure 1 displays the
predicted in vivo delivery curves estimated by the adaptive
feedback control algorithm as a function of the targeted
therapeutic window. Figure 2 displays the time-course of the
predicted individual RO values after an oral dose of 30 mg
once a day for a week. The optimal in vivo delivery param-
eters for a therapeutic window defined by 70% < RO < 100%,
were td � 14.6 h and � � 0.76. Figure 3 displays the RO

Fig. 1. Weibull model predicted in vivo delivery curves estimated by
the adaptive feedback control algorithm as a function of the targeted
therapeutic window: RO � 50–100%, td� 3.75, � � 0.53 (�); RO �

60–100%, td � 8.08, � � 0.56 (�); RO � 70–100%, td � 14.6, � �

0.76 (�) and RO � 80%-100%, td � 20.3, � � 1.08 (�).

Fig. 2. Simulation 1. Time–course of the individual predicted RO
values after the administration of an oral dose of 30 mg once a day for
a week. (a) RO values estimated with the initial in vivo delivery
parameters (td �1.5 h and � � 0.5). (b) RO values estimated with the
adjusted in vivo delivery parameters (td �14.6 h and ��0.76) and a
therapeutic window defined by RO ranging from 70% to 100%.

Fig. 3. RO sensitivity to model parameters computed for the initial
and optimal tb and � values.

Fig. 4. Simulation 2. Contour plot summarizes the simultaneous in-
fluence of Fd and EC50 on the expected RO values.
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sensitivity to changes in model parameters computed at the
initial and optimal tb and � values.

Simulation 2

The predicted median RO values estimated 24 h after the
seventh dose as a function of different values of Fd and EC50

are displayed in the contour plot shown in Figure 4.

Simulations 3, 4, and 5

The median RO values and the 5th and 95th percentiles
have been estimated 24 h after the seventh dose at increasing
IIV dispersion values. The 5th RO percentile represents the
most sensitive parameter to predict lack of drug efficacy in a
target population: the lower this value, the higher the likeli-
hood of lack of efficacy.

PC% = 100 �
Median − 5th percentile

Median
(8)

The percentage change relative to the difference be-
tween median RO and 5th RO percentile is displayed in Fig-
ure 5. This parameter shows how IIV on absorption PK, dis-
position PK, and drug potency affects the likelihood of lack of
efficacy.

DISCUSSION

This article illustrates an integrated approach for the in
silico design of an extended release formulation using feed-
back control theory, a convolution-based model, and trial
simulation technology jointly with PET imaging data. The
availability of validated biomarkers significantly increases the
interest for the use of in silico methods for the prediction of
the expected properties of new compounds. This approach
enables a discriminating criterion among drug candidates. It
also allows one to differentiate products by investigating com-
petitors’ weakness and strengths, to design experiments, to
predict optimal dosage regimens, and finally to define the
required formulation properties.

The results of the first simulation reveal that changes in
in vivo delivery rate can significantly affect the receptor oc-
cupancy after a chronic treatment, with a fixed dosage regi-
men, mainly altering the mean in vivo drug delivery time.
However, this finding is probably more enhanced by the dis-
position properties of the drug under evaluation because
drugs that show a relatively short half-life are expected to be
greatly influenced by changes in delivery profile. In addition,
td seems to drastically influence the extent of variability on
the predictions: with small td the relative dispersion is larger
at 24 h (trough time) and smaller at 2 h (peak time) whereas
with large td, we observed an opposite trend in the receptor

Table I. Simulation 3, 4, and 5. Median RO with the 5th and 95th Percentiles Estimated 24 h after the 7th Dose Estimated at Increasing IIV
Dispersion Values

Simulation
IIV

(CV%)
Median
RO%

5th
percentiles

95th
percentiles PC%

3 (absorption) 10 73.85 59.21 88.24 19.82
20 73.83 58.69 87.53 20.51
30 73.42 56.36 88.88 23.24

4 (disposition) 10 74.29 63.62 86.67 14.36
20 73.83 58.69 87.53 20.51
30 74.04 53.33 89.47 27.97

5 (potency) 10 74.64 58.8 86.06 21.22
20 73.83 58.69 87.53 20.51
30 72.74 58.76 88.49 19.22

Fig. 5. Simulations 3, 4, and 5. Percentage changes of the difference
between median RO and 5th RO percentile as a function of the IIV
dispersion on the absorption parameters (�), disposition parameters
(�), and drug potency (□). Fig. 6. Flow chart of the integrated model linking in vitro dissolution

and/or in vivo input rate to the pharmacodynamic response.
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occupancy dispersion, as displayed in Figure 2. This finding
indicates how the dispersion on pharmacodynamic response
can be controlled and adjusted to meet requirements by tun-
ing the in vivo delivery rate. The sensitivity analysis indicates
that receptor occupancy is more sensitive to model parameter
changes estimated at low (1.5 h) than at high td (15.6 h) value.
At low td, clearance is the most relevant parameter whereas at
high td value, all the parameters showed similar sensitivity
index. This result seems to indicate that the model response is
less affected by parameter variability and estimation error at
high dissolution time values. The results of the second simu-
lation are summarised in the contour plot (Fig. 4) showing the
simultaneous influence of Fd and EC50 on the expected re-
ceptor occupancy values: RO > 70% is expected with EC50<
.55 ng/mL but with Fd > 0.65. Obviously, these considerations
remain strictly related to the PK/PD properties of each drug.
In any case, these findings may constitute a helpful supportive
tool for the screening of alternative drug candidates in the
drug development process. The aim of the last three simula-
tions was to investigate the influence of IIV on receptor oc-
cupancy dispersion at 24 h after the seventh dose. The 5th

percentile of the receptor occupancy distribution was consid-
ered as a measure of the risk for lack of efficacy. The results
reported in Table I show an almost linear increase of the
percentage error with the increase of the coefficient of varia-
tion of disposition PK parameters, whereas only minor
changes are observed on the percentage error with the in-
crease of the coefficient of variation of absorption PK param-
eters and drug potency. This finding emphasizes the need to
identify and control the sources of IIV in the disposition ki-
netic parameters during the clinical development process, as a
key factor for an effective use of this drug. We can finally
recall that one of the challenges in biopharmaceutics research
is to find the relationship between in vitro characteristics of an
oral formulation and its in vivo performance. Such a relation-
ship is known as “in vitro/in vivo” correlation. Three possible
correlation levels (A, B, and C) have been defined: level A
establishes a direct relationship between the in vitro and the
in vivo dissolution/time profiles whereas levels B and C relate
summary statistics for the in vitro and in vivo profiles. Only
type A correlation enables one to use in vitro data to predict
in vivo performance. Using predictive mathematical model,
one can assess the relation between the in vitro dissolution/
release and in vivo response time course (17). Therefore, for
a formulation that presents correlation of level A, the phar-
macodynamic characteristics (such as onset and duration of
action, maximum intensity of effect, time of maximum effect,
and offset rate) can be directly linked to the in vitro dissolu-
tion properties. In these circumstances, the proposed convo-
lution-based PK model can be easily extended by replacing
the in vivo input rate with the in vitro dissolution rate after
appropriate time-scaling parameters correction has been ap-
plied (18). This possibility can significantly enlarge the appli-
cability of an in silico evaluation of the drug release proper-
ties for formulation development (Fig. 6). In conclusion, the
results show that the use of surrogates or direct measure-

ments of clinical endpoints jointly with convolution-based
model, feedback control approach and clinical trial simulation
offers a unique integrated tool for the in silico drug develop-
ment process by identifying critical issues on drug formulation
properties, optimal in vivo delivery rate and potential prob-
lems related to the inter-individual variability.
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